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Abstract. We take as a starting point the Gelmini–Roncadelli model enlarged by a term with explicit lepton
number violation in the Higgs potential and add a neutrino singlet field that is coupled via a scalar doublet
to the usual leptons. This scenario allows us to take into account all three present indications in favor
of neutrino oscillations provided by the solar, atmospheric, and LSND neutrino oscillation experiments.
Furthermore, it suggests a model which reproduces naturally one of the two 4-neutrino mass spectra favored
by the data. In this model, the solar neutrino problem is solved by large mixing MSW νe → ντ transitions,
and the atmospheric neutrino problem by transitions of νµ into a sterile neutrino.

1 Introduction

At present, there are three indications in favor of neutrino
oscillations with three different scales of the correspond-
ing neutrino mass-squared differences. Taking into account
that in the LEP experiment, the number of light active
neutrinos was determined to be three, it follows that at
least one sterile neutrino is required to describe all present
neutrino oscillation data (for reviews see, e.g., [1–4]). In
the following we confine ourselves to the 4-neutrino case,
which was discussed in many papers for a number of rea-
sons (for an incomplete list, see [5]). From present experi-
mental data, the nature of the 4-neutrino mass spectrum
can be inferred [6–8], and information on the 4×4 unitary
neutrino mixing matrix U , which is defined by

ναL =
4∑

j=1

UαjνjL with α = e, µ, τ, s, (1)

can be obtained. In this relation, ναL denotes the fields
with definite flavors or types whereas νjL denotes the left-
handed part of the neutrino mass eigenfields. The mea-
surement of the up–down asymmetry of the atmospheric
muon neutrino flux [9] allows one to draw definite con-
clusions on the types of possible neutrino mass spectra
[11] for the whole range of the mass-squared difference
∆m2

LSND determined by the LSND experiment [10] and
other short-baseline neutrino oscillation experiments. In
this way, only two types of mass spectra with two pairs
of close masses are allowed. These mass spectra can be
characterized in the following way [6,11]:

(A)
atm︷ ︸︸ ︷

m1 < m2 �
solar︷ ︸︸ ︷

m3 < m4︸ ︷︷ ︸
LSND

,

(B)
solar︷ ︸︸ ︷

m1 < m2 �
atm︷ ︸︸ ︷

m3 < m4︸ ︷︷ ︸
LSND

. (2)

The task of accommodating a light sterile neutrino in
an extension of the standard model poses serious problems
to model builders. In particular, it seems difficult to rec-
oncile the mass spectra (2) and the large mixing observed
in atmospheric neutrino oscillations with the original see-
saw mechanism [12]. However, models have been proposed
exploiting the “singular see-saw mechanism” [13] which
naturally achieve a large active–sterile neutrino mixing
[14–16]. Since a large mixing angle νe → νs transition as a
solution of the solar neutrino puzzle is not compatible with
the solar neutrino data [17], the singular see-saw mecha-
nism offers the possibility to explain the atmospheric neu-
trino anomaly by νµ → νs oscillations.

A large active–sterile neutrino mixing seems to be ex-
cluded by big-bang nucleosynthesis if only fewer than 4
effective light neutrino degrees of freedom (Nν) are al-
lowed (see [18,7,19] and citations therein). However, the
upper bound on Nν depends in particular on the primor-
dial deuterium abundance (D/H)P for which conflicting
measurements exist. For the low value of (D/H)P , the
value of Nν should be rather close to 3 [20], whereas a
high ratio (D/H)P allows also values of Nν around 4 [21].
In the following, we adopt the hypothesis that Nν = 4 is
allowed.

In this paper, our starting point for constructing a 4-
neutrino model is not the singular see-saw mechanism but
an extension of the standard model in the scalar sector.
Nevertheless, we will see that one can arrive at a sce-
nario equivalent to the one obtained in [14]. The possible
scalar multiplets extending the standard model are simply
obtained by studying the representations of SU(2)×U(1)
contained in all the fermionic bilinears that can be formed.
Apart from the scalar doublet, there are only three pos-
sibilities: a triplet, a singlet with charge +1 and a sin-
glet with charge +2 [22]. The basic and most prominent
models founded upon these scalar multiplets are given by
the models of Gelmini–Roncadelli (GR) [23], Zee [24], and
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Babu [25], respectively, with Majorana neutrino masses at
the tree-, one-, and two-loop level. Our discussion is based
on the GR model. In its original version, [23] it possesses a
spontaneously broken lepton number leading to a majoron
and a light neutral scalar such that the Z0 vector boson
decay into these two scalars has a width of twice the decay
width of Z0 → ναν̄α, where να denotes any of the three
active neutrinos [26]. Since there is no room for such a
decay according to the LEP measurements, we explicitly
break the lepton number by a cubic term in the Higgs po-
tential (see, e.g., [27]) in order to make the majoron heavy.
The vacuum expectation value (VEV) of the neutral mem-
ber of the Higgs triplet gives a Majorana mass matrix at
the tree level for the active neutrinos. To incorporate a
sterile neutrino singlet field νsR we couple it to the stan-
dard model lepton doublets via a Higgs doublet (for an
analogous procedure in the framework of the Zee model,
see [28]) and invoke a symmetry to forbid the mass term
νT

sRC−1νsR in which C is the charge conjugation matrix.
The main point of our scenario is to exploit the relation

|vT | � v , (3)

where vT is the VEV of the Higgs triplet and v denotes the
largest absolute value of the VEVs of the scalar doublets.
A large triplet VEV would destroy the tree-level relation
MW = MZ cos θW between the W and Z0 boson masses
and the Weinberg angle and the precision measurements
place a stringent bound on vT [29]. With the two scales v
and vT , we will show that at this stage we have a model
equivalent to the one described in [14]. Finally, we will
introduce a discrete symmetry to achieve maximal νµ–νs

mixing, to some extent without fine-tuning. In the final
stage of our model, we will have three scalar doublets in
addition to the Higgs triplet.

Other 4-neutrino models with Higgs triplets have been
considered in [30].

The paper is organized as follows. In Sect. 2 we will
present a thorough discussion of the GR model with ex-
plicit lepton number violation since this model is the basis
of the remaining discussion in the paper. The sterile neu-
trino singlet will be introduced in Sect. 3. In this section,
we will have large active–sterile mixing, but only the intro-
duction of a horizontal symmetry in Sect. 4 will naturally
restrict the large mixing to the muon neutrino. In Sect. 5,
we will present the conclusions.

2 The Gelmini–Roncadelli model
with explicit lepton number violation

In the GR model, the Yukawa Lagrangian in the lepton
sector is given by [23]

LY =
∑
a,b

{
− cab `aRφ†Lb

+
1
2
fabL

T
a C−1Iτ2∆Lb

}
+ h.c. , (4)

where a, b = 1, 2, 3 are the summation indices over the
active neutrino degrees of freedom, and La, `aR, and φ
denote the left-handed lepton doublets, the right-handed
lepton singlets and the Higgs doublet, respectively. The
Higgs triplet ∆ is represented in the form of a 2×2 ma-
trix. The coupling matrix for the Higgs triplet is symmet-
ric, i.e., fab = fba. Under U ∈ SU(2), these multiplets
transform as

La → ULa , `aR → `aR , φ → Uφ , ∆ → U∆U† . (5)

Their U(1) transformation properties are determined by
the hypercharges:

La `aR φ ∆

Y −1 −2 1 2.
(6)

Note that we are using the indices a, b instead of α, β (1).
The two sets of indices are identical in a basis where the
mass matrix of the charged leptons is diagonal. However,
for reasons that will become clear later, we want to use the
more general notation. The VEVs of the Higgs multiplets
consistent with electric charge conservation are given by

〈φ〉0 =
1√
2

(
0
v

)
and 〈∆〉0 =

(
0 0
vT 0

)
. (7)

The relation between the triplet Φ, the 2×2 matrix ∆,
and the charged scalars contained in the triplet is found
to be

∆ = Φ · τ =

(
H+

√
2H++

√
2H0 −H+

)
(8)

with

Φ =




1√
2
(H0 + H++)

−i√
2
(H0 − H++)

H+


 . (9)

The matrices τj (j = 1, 2, 3) are the Pauli matrices. In
(7) we have set 〈H0〉0 = vT /

√
2. The most general Higgs

potential involving φ and ∆ is written as

V (φ, ∆) =

a φ†φ +
b

2
Tr (∆†∆) + c (φ†φ)2 +

d

4
(
Tr (∆†∆)

)2
+

e − h

2
φ†φTr (∆†∆) +

f

4
Tr (∆†∆†) Tr (∆∆)

+h φ†∆†∆φ +
(
t φ†∆φ̃ + h.c.

)
, (10)

where φ̃ ≡ iτ2φ
∗. If the lepton number is assumed to be

conserved one has to assign lepton number −2 to the Higgs
triplet and 0 to the Higgs doublet [23] (see (4)). This
lepton number is explicitly broken by the last term in
the Higgs potential (10). Otherwise, this Higgs potential
agrees with the one given in [23], with the same definition
of the coupling constants. All parameters in the Higgs po-
tential are real except t, which is complex in general.

When a global U(1) transformation is performed, v can
always be chosen to be real and positive. Because of the t
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term in the potential, we do not have a second global sym-
metry, the lepton number [23], to make vT real. Further-
more, t can also be complex, and therefore we generally
write t = |t|eiω and vT = weiγ with w ≡ |vT |. We assume
that the following orders of magnitude for the parameters
in the potential hold:

a, b ∼ v2 ; c, d, e, f, h ∼ 1 ; |t| � v . (11)

The potential as a function of the VEVs is given by

V (〈φ〉0, 〈∆〉0) =
1
2
av2 +

1
2
bw2 +

1
4
cv4 +

1
4
dw4

+
1
4
(e − h)v2w2 + v2w|t| cos(ω + γ) .

(12)

It has to be minimized as a function of the three param-
eters v, w, γ in order to obtain the relations between the
VEVs and the parameters of the Higgs potential. Mini-
mization with respect to γ, the phase of vT , involves only
the last term in (12) with the minimum at ω + γ = π or

vT = −we−iω and vT t = −w|t| . (13)

With this relation, the other two minimum conditions are

a + cv2 +
e − h

2
w2 − 2|t|w = 0 , (14)

b + dw2 +
e − h

2
v2 − |t|

w
v2 = 0 . (15)

With the assumptions in (11) we find the approximate
solution

v2 ' −a

c
and w ' |t| v2

b + (e − h)v2/2
. (16)

Thus we see that w ∼ |t|, i.e., the triplet VEV is of the
order of the parameter |t| in the Higgs potential. The fine-
tuning to get a small triplet VEV is therefore simply given
by |t| � v, which should find an explanation in a more
complete theory which has the GR model as a low-energy
limit.1 This situation is analogous to that in the stan-
dard model and the see-saw mechanism for light neutrino
masses, where the large mass scale of the right-handed
neutrino singlets is assumed to come, e.g., from grand uni-
fication.

Equations (4) and (7) give rise to the mass terms for
the charged leptons and the neutrinos:

− (`RM``L + h.c.
)

with M` =
v√
2

(cab) , (17)

1
2
νT

L C−1MννL + h.c. with Mν = vT (fab) . (18)

As mentioned earlier, if the cubic term in the potential
(10) is absent, then there are two independent symmetries,
the gauge group and the lepton number, which allow us to

1 Alternatively, one could use b � v2 to get a small triplet
VEV [27].

adopt the convention v and vT as both real and positive.
This means that in the Higgs sector CP cannot be bro-
ken. It could, of course, be violated explicitly by complex
Yukawa couplings. In the presence of the cubic term, the
situation is more complicated. We define a CP transfor-
mation

φ → φ∗ , ∆ → ρ∆∗ with |ρ| = 1 (19)

for the two scalar multiplets. Invariance of the Higgs po-
tential under this CP transformation leads to the condi-
tion

t∗ = ρt (20)

for the parameter t. Interpreted in another way, for any
complex phase ω of t, the Higgs potential is invariant un-
der the CP transformation (19) if we choose

ρ = e−2iω . (21)

Let us check that the VEVs are indeed invariant under the
CP symmetry defined by (19) and (21). This is clear for
〈φ〉0 since v is real. Taking into account that the phase of
vT is given by (13) at the minimum of the potential and
using (19) and (21), we find

〈∆〉0 =

(
0 0
vT 0

)
CP−→ ρ〈∆〉∗

0 = ρ

(
0 0
v∗

T 0

)
=

(
0 0
vT 0

)
.

(22)
Hence we see that the vacuum state is invariant under CP,
regardless of the complex phase of t in the Higgs potential
(10) [31], and thus CP cannot be spontaneously broken.
Extending the CP transformation (19) by

Ψ(x0,x) → −CΨ∗(x0,−x) (23)

for the fermionic multiplets and assuming that the vector
bosons transform in the usual way, we obtain the condi-
tions

cab = c∗
ab , −ρfab = f∗

ab (24)

for CP invariance of the fermionic Lagrangian. Using the
second relation in (24), we find with (21) that

f∗
ab = −e−2iωfab . (25)

If we define f ′
ab by

f ′
ab = ie−iωfab, (26)

then (25) implies

f ′
ab ∈ R and vT fab = iwf ′

ab . (27)

In the following we will assume CP invariance for simplic-
ity, though it is not essential for the construction of our
model.

In the GR model the relation between the W and Z0

masses is obtained as [23,29]

M2
W

M2
Z cos2 θW

=
1 + 2w2/v2

1 + 4w2/v2 , (28)
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whereas in the standard model this ratio is 1. From pre-
cision data, in [29] the bound

w

v
<∼ 0.03 (29)

was obtained at 95% CL. If there are several Higgs dou-
blets with VEVs vk, then v has to replaced by
(
∑

k |vk|2)1/2 in (29).
With the definitions

φ0 =
1√
2
(v + φR + iφI) , H0 =

1√
2
eiγ(w + HR + iHI) ,

(30)
where the scalar fields with the subscripts R and I are
real fields, we write the couplings of the neutral scalars to
the Z0 boson as√

g2 + g′2

2
Zµ {(∂µφR)φI − (∂µφI)(φR + v)

+ 2(∂µHR)HI − 2(∂µHI)(HR + w)} .

(31)

The quantities g and g′ are the gauge coupling constants
of SU(2)×U(1). Note that the linear combination

2wHI + vφI (32)

in (31) is proportional to the pseudo-Goldstone boson field
associated with the Z0.

CP invariance of the scalar sector under the transfor-
mation (19) and the decomposition (30) show that the R
fields are CP-even and the I fields CP-odd. Therefore, the
mass matrix of the four real scalar fields splits into two
separate 2×2 matrices for the real and imaginary parts,
i.e.,

L0
S = −1

2
(HR, φR)M2

R

(
HR

φR

)
− 1

2
(HI , φI)M2

I

(
HI

φI

)
.

(33)
Using the minimum conditions (14) and (15) we get

M2
R =

(
2dw2 + qv2 (e − h − 2q)wv

(e − h − 2q)wv 2cv2

)
, (34)

M2
I = q

(
v2 −2wv

−2wv 4w2

)
, (35)

where we have defined

q ≡ |t|/w , (36)

which is a positive quantity of order one according to the
assumptions (11). The eigenvalues of the matrices M2

R
and M2

I are given by

m2
R1 ' 2cv2 +

(e − h − 2q)2

2c − q
w2 , (37)

m2
R2 ' qv2 −

[
(e − h − 2q)2

2c − q
− 2d

]
w2 , (38)

m2
I1 = q(v2 + 4w2) , (39)

m2
I2 = 0 , (40)

respectively. The masses of the R fields are given up to
first order in w2, whereas the masses of the I fields are
exact. The zero eigenvalue corresponds to the linear com-
bination (32). In the GR model without the cubic term
in the Higgs potential, we have t = 0 (or q = 0), and the
second eigenvalue of the I fields is zero. This eigenvalue
corresponds to the Goldstone boson (majoron) which re-
sults from the spontaneous breaking of the U(1) symmetry
connected with lepton number conservation. Moreover, in
this case m2

R2 is of order w2, and therefore the Z0 can
decay into the majoron and the light scalar with a decay
width of two neutrino flavors [26]. Thus, the GR model
is ruled out because of the LEP results. Equations (38)
and (39) show that when q is of order one, all physical
neutral scalars can be made heavy enough such that the
Z0 cannot decay into them. Consequently, the GR model
with a cubic term in the Higgs potential is consistent with
the LEP data [27].

For completeness, we also mention the masses of the
charged scalars. The mass Lagrangian for the singly char-
ged scalars is given by

L±
S = −(H−, φ−)M2

+

(
H+

φ+

)
(41)

with

M2
+ =

(
2(q + h/2)w2

√
2v(t∗ − vT h/2)√

2v(t − v∗
T h/2) (q + h/2)v2

)
. (42)

The field φ+ denotes the charged component of the scalar
doublet. One mass eigenvalue of this matrix is zero corre-
sponding to the pseudo-Goldstone boson that gives mass
to the W boson. The mass of the single physical scalar
with charge +1 is computed as

m2
+ =

(
q +

h

2

)
(v2 + 2w2) . (43)

For the mass of the scalar with charge +2, one finds

m2
H++ = (h + q)v2 + 2fw2 . (44)

Note that, as expected, all physical charged scalars are
heavy regardless of whether we set t = 0 or not, and hence
the Z0 cannot decay into charged Higgses for h ∼ 1. Lower
bounds on scalar masses from different mechanisms are all
below 100 GeV [32] and thus irrelevant for our discussion.

3 Adding a sterile neutrino

Adding a fourth neutrino to the GR model with a cubic
term in the Higgs potential, we have to take into account
that because of the LEP measurements of the Z0 decay
width, this neutrino must not couple to the Z0. Thus it has
to be a trivial singlet under SU(2)×U(1). Since it has no
gauge interactions, it is called a sterile neutrino. In anal-
ogy with the fields `aR, we denote it by the right-handed
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field νsR. The only new gauge-invariant terms involving
the sterile neutrino field are given by(

−
∑

a

haνsRφ̃†La +
1
2
Ms νT

sRC−1νsR

)
+ h.c. (45)

The Majorana mass |Ms| of the sterile neutrino is usu-
ally assumed to be much larger than the other neutrino
masses and could typically be of the order of the GUT
scale. Therefore, we opt for introducing a symmetry for-
bidding the mass term in (45). It turns out, however, that
it is not possible to construct such a symmetry, by as-
signing phase factors to all the multiplets of the model,
without forbidding other crucial terms of the model like
the cubic term in the Higgs potential. This forces us to
introduce a second scalar doublet φs. Then we can conve-
niently define a symmetry S by

S : νsR → eiανsR, φs → eiαφs . (46)

All other multiplets transform trivially. S forbids the Ma-
jorana mass term in (45), provided e2iα 6= 1. Now instead
of (45), we have

−
(∑

a

haνsRφ̃†
sLa + h.c.

)
. (47)

After spontaneous symmetry breaking, (47) gives the
mass term

−
(

vs√
2

∑
a

haνsRνaL + h.c.

)
where 〈φs〉0 =

1√
2

(
0
vs

)
.

(48)
It is easily seen that the condition e2iα 6= 1 causes the
Higgs potential to be invariant under S (46) interpreted
as a continuous symmetry with α ∈ R. Therefore by spon-
taneous symmetry breaking, we obtain a Goldstone boson.
One can show with the methods of Sect. 2 that the other
scalars are heavy and that there is thus no contradiction
with the measurement of the Z0 width. The couplings of
the Goldstone boson are similar to those in the model
of [33] (see also [23]), which was shown to be compatible
with experimental data. The continuous symmetry S al-
lows one to choose vs > 0, and φs transforms like φ (19)
under CP. Then the invariance of the term (47) under CP
implies h∗

a = ha.
The mass terms (18) and (47) are combined in a 4-

neutrino Majorana mass term as

1
2
(
νT

L , νT
sL

)
C−1M4ν

(
νL

νsL

)
+ h.c. (49)

with

M4ν =

(
iwF vs√

2
hT

vs√
2
h 0

)
, (50)

where we have defined the charge-conjugate field νsL ≡
(νsR)c, the 3×3 matrix F ≡ (f ′

ab), and the line vector

h ≡ (ha). Now we fix the notation of the diagonalizing ma-
trices of the mass terms. The mass matrices of the charged
leptons (see (17)) and of the neutrinos (see (50)) are di-
agonalized by

W †
` M`V` = M̂` and V T

ν M4νVν = M̂4ν , (51)

respectively. From V` and Vν , the mixing matrix (1) is
computed as

U = V ′
`

†
Vν with V ′

` =

(
V` 0
0 1

)
. (52)

For the remaining discussion, we will stick to the fol-
lowing order of magnitude assumptions:

F ∼ h and v ∼ vs ∼ 100 GeV . (53)

This makes our mass matrix (50) analoguous to the one
obtained in [14] with the singular see-saw mechanism.
With (53) and (3), the elements in the mass matrix (50)
are of two different orders of magnitude, represented by
the VEVs vs and |vT | or µ ∼ w|f ′

ab| � M ∼ vs|ha| ∀a, b.
With the ordering m1 < m2 < m3 < m4 of the neu-
trino masses, repeating the arguments of [14], we deter-
mine from (50) that

m1, m2 ∼ µ, m3, m4 ∼ M, m4 − m3 ∼ µ, (54)

and with the definition ∆m2
jk = m2

j − m2
k we obtain

∆m2
21 ∼ µ2, ∆m2

43 ∼ µM, ∆m2
41 ∼ M2 . (55)

Therefore, in a natural way, three different scales for the
mass-squared differences occur. If we set ∆m2

21 = ∆m2
solar∼ 10−5 eV2 and ∆m2

41 = ∆m2
LSND ∼ 1 eV2, we get

∆m2
43 ∼ 3 × 10−3 eV2, which is just the right order of

magnitude for ∆m2
atm. In this way, we obtain the mass

spectrum of Scheme B (2), which forces us to envisage
νe → ντ MSW transitions as a solution for the solar neu-
trino deficit and νµ → νs transitions for the atmospheric
neutrino anomaly. The ratio µ/M ∼ |vT |/vs ∼ 3 × 10−3

is well below the constraint (29). Note that a solution of
the solar neutrino problem by vacuum oscillations with
∆m2

solar ∼ 10−10 eV2 is not possible in the scenario dis-
cussed here.

Finally, we note that with the assumptions (53), the el-
ements of F and h must be very small: if we want M ∼ vsh
to be of order 1 eV, then vs ∼ 100 GeV implies that F
and h must be of order 10−11. However, with all coeffi-
cients in F and h being of the same order of magnitude,
the structure of the 4-neutrino mass spectrum correspond-
ing to Scheme B is obtained in a natural way, simply by
having the two scales given by vs and |vT |.

4 A discrete symmetry to implement large
νµ–νs mixing

The shortcomings of the model discussed in the previous
section and in [14], which were also noticed in [16], are that
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one still has to resort to fine-tuning in order to specify
the large active – sterile neutrino mixing to large νµ–νs

mixing and also to get the correct small νe–νµ mixing as
required by the result of the LSND experiment [10]. In the
following, we propose a symmetry called T which replaces
the symmetry S of the previous section and removes the
first shortcoming. It requires us, however, to enlarge the
Higgs content of the scenario in the previous section by an
additional scalar doublet. This will allow us to give also a
plausible reason for the small νe–νµ mixing.

In order to implement large νµ–νs mixing, we require
that in the Lagrangian (47), the right-handed neutrino sin-
glet couples to only one left-handed lepton doublet, which
we denote by L3. As we shall see, the nontrivial trans-
formation of the left-handed lepton doublets under T ne-
cessitates the introduction of two scalar doublets φ1,2 in
the Lagrangian (4) in order to have only nonzero charged-
lepton masses. The symmetry T is defined via the pre-
scription

T : νsR → iνsR , φs → −iφs ,

φ2 → −φ2 , L3 → −L3 . (56)

All other fields transform trivially under T . Taking into
account T , the Yukawa couplings for the two Higgs dou-
blets φ1,2 are given by

−
{(

3∑
a=1

2∑
b=1

cab`aRφ†
1Lb +

∑
a=1,2,3

ya`aRφ†
2L3

)
+ h.c.

}
.

(57)
With the three Higgs doublets φ1,2,s we have the terms

φ†
sφ1φ

†
sφ2 and φ†

1φ2φ
†
1φ2 (58)

in the Higgs potential. As a consequence, the only U(1)
allowed by the potential is the one associated with the
hypercharge. Thus with the symmetry T we forbid a Ma-
jorana mass term of the right-handed neutrino singlet and
avoid a Goldstone boson at the same time.

Defining 〈φ0
k〉 = vk/

√
2 (k = 1, 2, s), we assume that all

doublet VEVs are of the same order of magnitude. Now,
with the two cubic terms pertaining to φ1,2 and the quar-
tic terms (58) in the Higgs potential, CP can be broken
explicitly or spontaneously in the Higgs sector. In the fol-
lowing, we will stick to CP conservation and assume real
VEVs for simplicity. The Yukawa couplings (57) give the
mass matrix for the charged leptons:

M` =


 v1√

2


 c11 c12

c21 c22

c31 c32


,

v2√
2


 y1

y2

y3




 . (59)

From this equation, it is obvious that a third scalar dou-
blet φ2 is needed to reproduce the charged-lepton mass
spectrum. Because of the symmetry T , the neutrino mass
matrix splits into two 2 × 2 matrices:

M4ν =

(
M12 0

0 M3s

)
, (60)

with

M12 = iw

(
f ′
11 f ′

12

f ′
12 f ′

22

)
and M3s =

(
iwf ′

33
vs√
2
h3

vs√
2
h3 0

)
.

(61)
Let us consider the matrix M3s. Up to order w, it gives
the neutrino masses

1√
2
|vsh3| ± 1

2
wf ′

33 (62)

and a mixing angle θ3s obtained by

sin2 2θ3s ' 1 − 1
2

(
wf ′

33

vsh3

)2

. (63)

With vs ∼ v1,2, f ′
ab ∼ h3 (53) and (29), sin2 2θ3s is 1 for

all practical purposes, and naturally we want to associate
the matrix M3s with the νµ − νs solution of the atmo-
spheric neutrino problem. Furthermore, the other 2 × 2
mass matrix M12 has all matrix elements of the same
order of magnitude and therefore suggests that the solar
neutrino problem be explained by νe −ντ oscillations with
the large-angle MSW solution.

The diagonalization matrix Vν of the neutrino mass
matrix (60) consists of two 2 × 2 submatrices, i.e.,

Vν =

(
V12 0
0 V3s

)
. (64)

So Vν does not have, e.g., νe–νµ mixing necessary to de-
scribe the LSND experiment, provided we associate the
submatrices of Mν (60) with neutrino flavors, as was done
in the previous paragraph. However, in order to obtain the
mixing matrix U , we have to multiply Vν with V ′

`
† (see

(1) and (52)), which is determined by the diagonalization
of M` (17). Our model does not specify M`. In order
to proceed further, we make the following assumption re-
garding V`: In analogy with the quark sector we assume
that V` is close to a diagonal phase matrix. This amounts
to |(V`)1e| ' |(V`)2τ | ' |(V`)3µ| ' 1, since these elements
correspond to the diagonal elements of V` in our model.
All other elements are assumed to be small.

Clearly, this assumption is in agreement with the sce-
narios for the atmospheric and solar neutrinos proposed
above. Let us now discuss how the result of the LSND
experiment fits into the model. This experiment measures
the short-baseline transition amplitude

P
(SBL)
ν̄µ→ν̄e

= Ae;µ sin2 ∆m2
41L

4Eν
, (65)

where L is the distance between the neutrino source and
detector, Eν is the neutrino energy, and the oscillation
amplitude Ae;µ is obtained from the mixing matrix as

Ae;µ = 4

∣∣∣∣∣∣
∑

j=3,4

U∗
ejUµj

∣∣∣∣∣∣
2

. (66)
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Considering the structure (64) of Vν , one finds

Ae;µ = 4 |(V`)3e|2|(V`)3µ|2 ' 4 |(V`)3e|2 . (67)

In the last step, we have used our assumption about V`.
The experimental result of the LSND experiment, taking
into account other short-baseline experiments which have
seen no indication in favor of neutrino oscillations, is ex-
pressed as [10],

2 × 10−3 <∼ Ae;µ <∼ 3 × 10−2 , (68)

where the bounds result from the LSND-allowed region
(90% CL). Thus, from (66) and (67), it follows that |(V`)3e|
is of the order of 10−2 to 10−1, conforming with the above
assumption as expected.

We conclude this section with some remarks about the
scalars. Now there are two cubic terms corresponding to
φ1,2, and therefore two coupling constants t1,2 in the po-
tential (see (10)) which must both be much smaller than
the doublet VEVs and of the order of the triplet VEV.
The assumption of CP conservation simplifies the discus-
sion of the neutral scalar masses because it causes the 8×8
scalar mass matrix to split into two 4×4 mass matrices,
one for the R fields and one for the I fields (see Sect. 1).
One can again show that all physcial neutral scalars are
heavy of the order of the doublet VEVs. The same is true
for the charged scalars.

5 Conclusions

In this paper we have constructed a 4-neutrino model
based on the Gelmini – Roncadelli model, which extends
the standard model by a scalar triplet ∆ leading to Majo-
rana neutrino masses at the tree level. In order to prevent
the Z0 decay into light neutral scalars, we have explic-
itly broken the lepton number of the original GR model
by a cubic term in the Higgs potential. We have intro-
duced a sterile neutrino and coupled it to the standard
lepton gauge doublets by a separate Higgs doublet φs. It
is well known that the triplet VEV must be much smaller
than the doublet VEVs because of the tree-level relation
MW = MZ cos θW . One of the main points of our model is
to exploit the presence of the two scales represented by the
triplet and doublet VEVs. In this way, assuming that the
∆ and φs couplings are of the same order of magnitude,
we immediately arrive at a model which reproduces the
neutrino mass spectrum of Scheme B (2), one of the two
schemes allowed by all present neutrino oscillation data.
This model, described in Sect. 3, is completely analogu-
ous to the model of [14], which invokes the singular see-saw
mechanism. However, in this case, the heavy scale of the
see-saw mechanism is quite low, on the order of keV. Our
model avoids this – as we have only four light neutrinos
– at the expense of the triplet VEV being much smaller
than the doublet VEVs occurring in the model. Of course,
the smallness of the triplet VEV can be obtained only by
fine-tuning in the Higgs potential, and the hope is that
in a more complete theory, this problem of fine-tuning is

resolved. Note that in our model, neutrinoless double β
decay is suppressed, because in Scheme B the effective
Majorana mass 〈m〉 =

∑
j U2

ejmj is small [6], and mecha-
nisms involving the Higgs sector are negligible due to the
tiny scalar–fermion couplings.

The scenario of Sect. 3 automatically leads to a large
active–sterile neutrino mixing. However, any linear combi-
nation of the active neutrinos could have this large mixing.
In Sect. 4 we introduced a symmetry which splits the 4×4
Majorana neutrino mass matrix into two 2 × 2 matrices.
The diagonalization matrices of both 2 × 2 matrices con-
tain a large angle, one of them is π/4 for all practical pur-
poses. In this version of the model, we need three Higgs
doublets. Neglecting for a moment the part of the mix-
ing matrix U coming from the charged-lepton sector (see
(52)), the mixing matrix also separates into two 2×2 ma-
trices. In this way, we naturally obtain a model where the
solar neutrino problem is explained by large mixing angle
MSW νe → ντ transitions and the atmospheric neutrino
problem by νµ → νs transitions with mixing angle π/4.
With the assumption that in the charged-lepton sector,
the left-handed diagonalization matrix of the mass ma-
trix is close to a diagonal phase matrix, the scenario just
described is not very much disturbed. Moreover, one can
exploit V` (51) to incorporate the LSND result of small
νe–νµ mixing, which is forbidden if V` is diagonal.

This assumption about the charged-lepton sector is
certainly a weak point of our model, but in any case, we
have no explanation for the charged-lepton spectrum ei-
ther. Furthermore, the assumption of an equal order of
magnitude of the ∆ and φs couplings leads to very small
coupling constants of order 10−11 to obtain the smallness
of the neutrino masses relative to MW and MZ . In addi-
tion, this has to find a natural explanation in a larger the-
ory. Despite these shortcomings, we want to stress that our
model requires only the minimal extension of the fermionic
sector of the standard model necessary for a 4-neutrino
scheme and that looking for an explanation of the
4-neutrino mass spectrum indicated by the experimental
data in terms of VEVs of scalar multiplets could provide
interesting clues for theories with scales beyond the gauge
boson masses of the standard model.
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G. Senjanović, Phys. Rev. Lett. 44, 912 (1980)

13. R. Johnson, S. Ranfone, J. Schechter, Phys. Lett. B 179,
355 (1986); S.L. Glashow, Phys. Lett. B 256, 255 (1991);
M Fukugita, T. Yanagida, Phys. Rev. Lett. 66, 2705
(1991)

14. E.J. Chun, C.W. Kim, U.W. Lee, Phys. Rev. D 58, 093003
(1998)

15. Y. Chikira, N. Haba, Y. Mimura, hep-ph/9808254
16. C. Liu, J. Song, hep-ph/9812381
17. P.I. Krastev, S.T. Petcov, Phys. Rev. D 53, 1665 (1996);

P.I. Krastev, Q.Y. Liu, S.T. Petcov, Phys. Rev. D 54,
7057 (1996)

18. X. Shi, G.M. Fuller, astro-ph/9904041
19. S.M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, As-

tropart. Phys. 11, 413 (1999)
20. S. Burles, et al., astro-ph/9901157
21. K.A. Olive, D. Thomas, hep-ph/9811444; E. Lisi, S.

Sarkar, F.L. Villante, hep-ph/9901404; K.A. Olive, talk
delivered at the 19th Texas Symposium on Relativistic As-
trophysics and Cosmology, Paris, France, December 1998,
astro-ph/9903309

22. W. Konetschny, W. Kummer, Phys. Lett. B 70, 433
(1977); T.P. Cheng, L.-F. Li, Phys. Rev. D 22, 2860 (1980)

23. G.B. Gelmini, M. Roncadelli, Phys. Lett. B 99, 411 (1981)
24. A. Zee, Phys. Lett. B 93, 387 (1980)
25. K.S. Babu, Phys. Lett. B 203, 132 (1988)
26. H.M. Georgi, S.L. Glashow, S. Nussinov, Nucl. Phys. B

193, 297 (1981)
27. E. Ma, Utpal Sarkar, Phys. Rev. Lett. 80, 5716 (1998)
28. A.Yu. Smirnov, M. Tanimoto, Phys. Rev. D 55, 1665

(1997)
29. J. Erler, P. Langacker, hep-ph/9903476
30. S. Rajpoot, C. Valiotis, Nucl. Phys. B (Proc. Suppl.) 51,

269 (1996); Utpal Sarkar, Phys. Rev. D 59, 031301 (1999);
V. Barger, et al., hep-ph/9901388

31. G. Ecker, W. Grimus, H. Neufeld, Nucl. Phys. B 247,
70 (1984); G.C. Branco, J.-M. Gérard, W. Grimus, Phys.
Lett. B 136, 383 (1984); W. Grimus, M.N. Rebelo, Phys.
Rep. 281, 239 (1997)

32. C. Caso, et al. (Particle Data Group), Eur. Phys. J. C 3,
1 (1998)

33. Y. Chikashige, R.N. Mohapatra, R.D. Peccei, Phys. Lett.
B 98, 265 (1981)


